• Title of article

    Affine equivariant multivariate rank methods

  • Author/Authors

    Visuri، S. نويسنده , , Ollila، E. نويسنده , , Koivunen، V. نويسنده , , M?tt?nen، J. نويسنده , , Oja، H. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -160
  • From page
    161
  • To page
    0
  • Abstract
    The classical multivariate statistical methods (MANOVA, principal component analysis, multivariate multiple regression, canonical correlation, factor analysis, etc.) assume that the data come from a multivariate normal distribution and the derivations are based on the sample covariance matrix. The conventional sample covariance matrix and consequently the standard multivariate techniques based on it are, however, highly sensitive to outlying observations. In the paper a new, more robust and highly efficient, approach based on an affine equivariant rank covariance matrix is proposed and outlined. Affine equivariant multivariate rank concept is based on the multivariate Oja (Statist. Probab. Lett. 1 (1983) 327) median.
  • Keywords
    Growth curve model , Likelihood ratio test , Multivariate ANOVA , Maximum likelihood estimator , Parsimonious modeling , Reduced-rank regression
  • Journal title
    Journal of Statistical Planning and Inference
  • Serial Year
    2003
  • Journal title
    Journal of Statistical Planning and Inference
  • Record number

    73341