Title of article
Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws
Author/Authors
Gui-Qiang Chen، نويسنده , , Stéphane Junca، نويسنده , , Michel Rascle، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
37
From page
439
To page
475
Abstract
Nonlinear geometric optics with various frequencies for entropy solutions only in L∞ of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L1-stability. New multidimensional features are recognized, especially including nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric optics for entropy solutions in L∞ of multidimensional scalar conservation laws is justified.
Keywords
Multiscale , BV , stability , Entropy solutions in L? , VALIDITY , New Approach , Nonlinear geometric optics , Perturbation , Multidimensional conservation laws , Entropy dissipation , Compactness , Oscillation , homogenization , Scaling , Profile
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year
2006
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number
750807
Link To Document