• Title of article

    Positive clustered layered solutions for the Gierer–Meinhardt system

  • Author/Authors

    T. Kolokolonikov، نويسنده , , Juncheng Wei، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    30
  • From page
    964
  • To page
    993
  • Abstract
    We consider the stationary Gierer–Meinhardt system in a ball of : where Ω=BR is a ball of (N 2) with radius R, ε>0 is a small parameter, and p,q,m,s satisfy the following condition: Assume where a∞>1 whose numerical value is a∞=1.06119. We prove that there exists a unique Ra>0 such that for R (Ra,+∞] (R=+∞ corresponds to case), and for any fixed integer K 1, this system has at least one (sometimes two) radially symmetric positive solution (uε,K,vε,K), which concentrate at K spheres , where rε,1>rε,2> >rε,K are such that , where r0
  • Keywords
    Clustered layer solutions , Gierer–Meinhardt system , singular perturbations , pattern formation
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2008
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    751454