Title of article
Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere
Author/Authors
Youhei Kawanaka، نويسنده , , Emiko Matsumoto، نويسنده , , Ning Wang، نويسنده , , Sun-Ja Yun، نويسنده , , Kazuhiko Sakamoto، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
6
From page
7423
To page
7428
Abstract
This is the first report of the quantification of nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in ultrafine particles in the roadside atmosphere and their contribution to the direct-acting mutagenicity of ultrafine particles. The detailed size distributions of six nitro-PAHs (2-nitrofluoranthene, 1-nitropyrene, 6-nitrobenzo[a]pyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, and 1,8-dinitropyrene) were measured by highly sensitive gas chromatography–negative ion chemical ionization tandem mass spectrometry. Direct-acting mutagenicity of size-fractionated particulate matter (PM) was determined by the Ames test using Salmonella typhimurium strains TA98 and YG1024. The amounts of nitro-PAHs per unit mass of ultrafine particles (<0.12 μm) were significantly higher than those of accumulation mode particles (0.12–2.1 μm) and of coarse particles (>2.1 μm). Therefore, more than 20% of each nitro-PAH, with the exception of 2-nitrofluoranthene, was observed in the ultrafine particle fraction, although the contribution of ultrafine particles to the total PM mass in the roadside atmosphere was only 2.3%. Also, in both tester strains TA98 and YG1024, the mutagenicity per unit mass of ultrafine particles was significantly higher than those of accumulation mode particles or coarse particles. The contributions of 2-nitrofluoranthene, 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, and 1,8-dinitropyrene to the direct-acting mutagenicity of ultrafine particles were 0.56, 1.5, 0.57, 2.2, and 9.2%, respectively, in the TA98 strain, and 0.54, 1.1, 0.71, 5.0, and 17%, respectively, in the YG1024 strain, while the contribution of 6-nitrobenzo[a]pyrene was less than 0.01% in both strains. 1,8-Dinitropyrene was the largest contributor to the mutagenicity not only of ultrafine particles but also of accumulation mode particles in both strains. Only five nitro-PAHs accounted for as much as 14 and 24% of the direct-acting mutagenicity of ultrafine particles in the roadside atmosphere in the TA98 strain and the YG1024 strain, respectively. This result indicated that nitro-PAHs, especially 1,8-dinitropyrene, were important contributors to the high direct-acting mutagenicity of ultrafine particles in the roadside atmosphere.
Keywords
Nitrated polycyclic aromatic hydrocarbonsSize distributionUltrafine particleMutagenicityRoadside atmosphere
Journal title
Atmospheric Environment
Serial Year
2008
Journal title
Atmospheric Environment
Record number
761350
Link To Document