Title of article
Vanishing exponential integrability for functions whose gradients belong to Ln(log(e+L))α
Author/Authors
David R. Adams، نويسنده , , Ritva Hurri-Syrj?nen، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
17
From page
162
To page
178
Abstract
If the gradient of u(x) is nth power locally integrable on Euclidean n-space, then the integral average over a ball B of the exponential of a constant multiple of |u(x)−uB|n/(n−1), uB=average of u over B, tends to 1 as the radius of B shrinks to zero—for quasi almost all center points. This refines a result of N. Trudinger (1967). We prove here a similar result for the class of gradients in Ln(log(e+L))α, 0⩽α⩽n−1. The results depend on a capacitary strong-type inequality for these spaces.
Keywords
Capacity , Exponential-type inequality , Capacitary strong-type inequality , Vanishing exponentialintegrability
Journal title
Journal of Functional Analysis
Serial Year
2003
Journal title
Journal of Functional Analysis
Record number
761521
Link To Document