Title of article
Compactness via symmetrization
Author/Authors
Almut Burchard، نويسنده , , Yan-Guo Wang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
34
From page
40
To page
73
Abstract
Consider two types of translation-invariant functionals I and J on Rm, and a sequence of functions fn whose corresponding symmetric rearrangements f∗n are convergent. We show that fn themselves converge up to translations if either limn→∞I(fn)=limn→∞I(fn∗) or limn→∞J(fn)=limn→∞J(fn∗). These compactness results lead to applications in variational problems and stability problems in stellar dynamics.
Keywords
Stellardynamics , Concentration compactness , Symmetric rearrangement , Dynamical stability , Sobolev inequality , Hardy-Littlewood-Sobolev inequality , Euler-Poisson system , Vlasov-Poisson system
Journal title
Journal of Functional Analysis
Serial Year
2004
Journal title
Journal of Functional Analysis
Record number
761835
Link To Document