Title of article
A best upper bound for the 2-norm condition number of a matrix Original Research Article
Author/Authors
Jorma Kaarlo Merikoski، نويسنده , , Uoti Urpala، نويسنده , , Ari Virtanen، نويسنده , , Tin-Yau Tam، نويسنده , , Frank Uhlig، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1997
Pages
11
From page
355
To page
365
Abstract
Let A be an n × n nonsingular real or complex matrix. The best possible upper bound for the ratio of the largest and smallest singular values of A, using tr A*A, det A, and n only, is obtained. A comparison with an earlier bound is given, and the singular and nonsquare cases are included. If all the eigenvalues of A are real and positive, the best possible upper bound for the ratio of the largest and smallest eigenvalues of A, involving tr A, det A, and n only, is presented as well.
Journal title
Linear Algebra and its Applications
Serial Year
1997
Journal title
Linear Algebra and its Applications
Record number
821991
Link To Document