• Title of article

    Variations on a theorem of Ryser Original Research Article

  • Author/Authors

    Dasong Cao، نويسنده , , V. Chv?tal، نويسنده , , A. J. Hoffman، نويسنده , , Clinton A. Vince، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    8
  • From page
    215
  • To page
    222
  • Abstract
    A famous theorem of Ryser asserts that a v × v zero-one matrix A satisfying AAT = (k − λ)I + λJ with k ≠ λ must satisfy k + (v − 1) λ = k2 and ATA = (k − λ)I + λJ; such a matrix A is called the incidence matrix of a symmetric block design. We present a new, elementary proof of Ryserʹs theorem and give a characterization of the incidence matrices of symmetric block designs that involves eigenvalues of AAT.
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    1997
  • Journal title
    Linear Algebra and its Applications
  • Record number

    822102