• Title of article

    Two connections between the SR and HR eigenvalue algorithms

  • Author/Authors

    Peter Benner، نويسنده , , Heike Fa?bender، نويسنده , , David S. Watkins، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    16
  • From page
    17
  • To page
    32
  • Abstract
    The SR and HR algorithms are members of the family of GR algorithms for calculating eigenvalues and invariant subspaces of matrices. This paper makes two connections between the SR and HR algorithms: (1) An iteration of the SR algorithm on a 2n × 2n symplectic butterfly matrix using shifts μi, μ−1i, i = 1,…, k, is equivalent to an iteration of the HR algorithm on an n × n tridiagonal sign-symmetric matrix using shifts μi + μ−1i, i = 1,…, k. (2) An iteration of the SR algorithm on a 2n × 2n J-tridagonal Hamiltonian matrix using shifts μi, −μi, i = 1,…, k, is equivalent to an iteration of the HR algorithm on an n × n tridiagonal sign-symmetric matrix using shifts μ2i, i = 1,…, k.
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    1998
  • Journal title
    Linear Algebra and its Applications
  • Record number

    822327