Title of article
Two connections between the SR and HR eigenvalue algorithms
Author/Authors
Peter Benner، نويسنده , , Heike Fa?bender، نويسنده , , David S. Watkins، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
16
From page
17
To page
32
Abstract
The SR and HR algorithms are members of the family of GR algorithms for calculating eigenvalues and invariant subspaces of matrices. This paper makes two connections between the SR and HR algorithms: (1) An iteration of the SR algorithm on a 2n × 2n symplectic butterfly matrix using shifts μi, μ−1i, i = 1,…, k, is equivalent to an iteration of the HR algorithm on an n × n tridiagonal sign-symmetric matrix using shifts μi + μ−1i, i = 1,…, k. (2) An iteration of the SR algorithm on a 2n × 2n J-tridagonal Hamiltonian matrix using shifts μi, −μi, i = 1,…, k, is equivalent to an iteration of the HR algorithm on an n × n tridiagonal sign-symmetric matrix using shifts μ2i, i = 1,…, k.
Journal title
Linear Algebra and its Applications
Serial Year
1998
Journal title
Linear Algebra and its Applications
Record number
822327
Link To Document