• Title of article

    A Robertson-type uncertainty principle and quantum Fisher information Original Research Article

  • Author/Authors

    Paolo Gibilisco، نويسنده , , Daniele Imparato، نويسنده , , Tommaso Isola، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    19
  • From page
    1706
  • To page
    1724
  • Abstract
    Let A1,…,AN be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty principleimagegives a bound for the quantum generalized variance in terms of the commutators [Ah,Aj]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1. Let f be an arbitrary normalized symmetric operator monotone function and let left angle bracket·,·right-pointing angle bracketρ,f be the associated quantum Fisher information. We have conjectured the inequalityimagethat gives a non-trivial bound for any image using the commutators [ρ,Ah]. In the present paper the conjecture is proved by mean of the Kubo–Ando mean inequality.
  • Keywords
    Quantum Fisher information , Generalized variance , Uncertainty principle , Operator monotone functions , Matrix means
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    2008
  • Journal title
    Linear Algebra and its Applications
  • Record number

    825879