Title of article
Light-Catalyzed Chromium(VI) Reduction by Organic Compounds and Soil Minerals
Author/Authors
Wang، M. K. نويسنده , , Tzou، Y. M. نويسنده , , Loeppert، R. H. نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2003
Pages
-2075
From page
2076
To page
0
Abstract
Detoxification of Cr(VI) through reduction has been considered an effective method for reclaiming Cr-contaminated soil, sediment, and waste water. Organic matter is widely distributed in soil and aquatic systems; however, low Cr(VI) reduction rates inhibit the adoption of Cr reduction technologies by industry. Scientists have been aware of Cr(VI) reduction catalyzed by soil minerals; however, most of the studies focused on using semiconductors as catalysts with UV irradiation to accelerate the redox reactions. The objective of this study was to evaluate the rates of Cr(VI) reduction by fluorescence light in the presence of organic materials with or without specific soil minerals. Experimental results showed that dissolved organic compounds reduced Cr(VI) slowly under laboratory light; however, Cr(VI) reduction was greatly enhanced when growth chamber light was applied. Low photon flux (i.e., laboratory light) only enhanced Cr(VI) reduction by organics when Fe(III) was also present, because the Fe(II)–Fe(III) redox couple accelerated electron transfer and decreased electrostatic repulsion between reactants. Laboratory light was required to initiate Cr(VI) reduction catalyzed by TiO2; nonetheless, light-catalyzed Cr(VI) reduction by smectite and ferrihydrite could occur only when greater light energy was provided with a growth chamber light. Our results suggest a potential pathway for Cr(VI) reduction using naturally occurring organic compounds and colloids in acidic water systems or in surface soils when light is available.
Keywords
lipid composition , dry matter , whorl positions , Carbohydrates , Oil , sunflower seed
Journal title
Journal of Environmental Quality(JEQ)
Serial Year
2003
Journal title
Journal of Environmental Quality(JEQ)
Record number
82607
Link To Document