• Title of article

    Markov-Type Inequalities for Products of Müntz Polynomials Original Research Article

  • Author/Authors

    Tamas Erdelyi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    18
  • From page
    171
  • To page
    188
  • Abstract
    Let Λ≔(λj)∞j=0 be a sequence of distinct real numbers. The span of {xλ0, xλ1, …, xλn} over R is denoted by Mn(Λ)≔span{xλ0, xλ1, …, xλn}. Elements of Mn(Λ) are called Müntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Müntz polynomials. Theorem 2.1.LetΛ≔(λj)∞j=0andΓ≔(γj)∞j=0be increasing sequences of nonnegative real numbers. LetK(Mn(Λ), Mm(Γ))≔sup ‖x(pq)′ (x)‖[0, 1]‖pq‖[0, 1]: p∈Mn(Λ), q∈Mm(Γ).Then13((m+1) λn+(n+1) γm)⩽K(Mn(Λ), Mm(Γ))⩽18(n+m+1)(λn+γm).In particular ,23(n+1) λn⩽K(Mn(Λ), Mn(Λ))⩽36(2n+1) λn. Under some necessary extra assumptions, an analog of the above Markov-type inequality is extended to the cases when the factor x is dropped, and when the interval [0, 1] is replaced by [a, b]⊂(0, ∞).
  • Keywords
    * Markov-type inequality , * Müntz polynomials , * lacunary polynomials , * Dirichlet sums
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2001
  • Journal title
    Journal of Approximation Theory
  • Record number

    851953