• Title of article

    Polynomial reproduction by symmetric subdivision schemes Original Research Article

  • Author/Authors

    Nira Dyn، نويسنده , , Kai Hormann ، نويسنده , , Malcolm A. Sabin، نويسنده , , Zuowei Shen، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    15
  • From page
    28
  • To page
    42
  • Abstract
    We first present necessary and sufficient conditions for a linear, binary, uniform, and stationary subdivision scheme to have polynomial reproduction of degree dd and thus approximation order d+1d+1. Our conditions are partly algebraic and easy to check by considering the symbol of a subdivision scheme, but also relate to the parameterization of the scheme. After discussing some special properties that hold for symmetric schemes, we then use our conditions to derive the maximum degree of polynomial reproduction for two families of symmetric schemes, the family of pseudo-splines and a new family of dual pseudo-splines.
  • Keywords
    * approximation order , * Polynomial generation , * Quasi-interpolation. , * Polynomial reproduction , * subdivision schemes
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2008
  • Journal title
    Journal of Approximation Theory
  • Record number

    852604