• Title of article

    Cesàro means of Jacobi expansions on the parabolic biangle Original Research Article

  • Author/Authors

    W. zu Castell، نويسنده , , F. Filbir، نويسنده , , Y. Xu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    13
  • From page
    167
  • To page
    179
  • Abstract
    We study Cesàro (C,δ)(C,δ) means for two-variable Jacobi polynomials on the parabolic biangle View the MathML sourceB={(x1,x2)∈R2:0≤x12≤x2≤1}. Using the product formula derived by Koornwinder and Schwartz for this polynomial system, the Cesàro operator can be interpreted as a convolution operator. We then show that the Cesàro (C,δ)(C,δ) means of the orthogonal expansion on the biangle are uniformly bounded if δ>α+β+1δ>α+β+1, α≥β≥0α≥β≥0. Furthermore, for View the MathML sourceδ≥α+2β+32 the means define positive linear operators.
  • Keywords
    * Cesàro summability , * Parabolic biangle , * Two-variable orthogonal polynomials , * Convolution operators , * Positive linear operators , * orthogonal expansion
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2009
  • Journal title
    Journal of Approximation Theory
  • Record number

    852655