Title of article
Asymmetric type II periodic motions for nonlinear impact oscillators Original Research Article
Author/Authors
Yurong Li، نويسنده , , Zhengdong Du، نويسنده , , Weinian Zhang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
16
From page
2681
To page
2696
Abstract
In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O(ε)O(ε) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.
Keywords
Subharmonic bifurcation , Poincaré map , Non-smooth system , Melnikov method , Impact oscillator
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2008
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
860218
Link To Document