• Title of article

    Asymmetric type II periodic motions for nonlinear impact oscillators Original Research Article

  • Author/Authors

    Yurong Li، نويسنده , , Zhengdong Du، نويسنده , , Weinian Zhang، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    16
  • From page
    2681
  • To page
    2696
  • Abstract
    In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O(ε)O(ε) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.
  • Keywords
    Subharmonic bifurcation , Poincaré map , Non-smooth system , Melnikov method , Impact oscillator
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2008
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    860218