• Title of article

    Existence and unicity of solutions for a non-local relaxation equation Original Research Article

  • Author/Authors

    F. Paparella، نويسنده , , E. Pascali، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    9
  • From page
    1702
  • To page
    1710
  • Abstract
    We study the following one-dimensional evolution equation: View the MathML source∂u∂t(x,t)=∫A+u(x,t)λ1(ξ,t)(u(ξ,t)−u(x,t))dξ−∫A−u(x,t)λ2(ξ,t)(u(x,t)−u(ξ,t))dξ, Turn MathJax on where View the MathML sourceA+u(x,t)={ξ∈[0,1]∣u(ξ,t)>u(x,t)},A−u(x,t)=[0,1]∖A+u(x,t), and λ1λ1, λ2λ2 are non-negative functions. We prove the existence of solutions for a particular class of initial data u(x,0)u(x,0). We also prove that the solutions are unique. Finally, under additional constraints on the initial data, we give an explicit expression for the solution.
  • Keywords
    integro-differential equation , Relaxation equation , existence and uniqueness
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2009
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    860868