Title of article
Existence and unicity of solutions for a non-local relaxation equation Original Research Article
Author/Authors
F. Paparella، نويسنده , , E. Pascali، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
9
From page
1702
To page
1710
Abstract
We study the following one-dimensional evolution equation:
View the MathML source∂u∂t(x,t)=∫A+u(x,t)λ1(ξ,t)(u(ξ,t)−u(x,t))dξ−∫A−u(x,t)λ2(ξ,t)(u(x,t)−u(ξ,t))dξ,
Turn MathJax on
where View the MathML sourceA+u(x,t)={ξ∈[0,1]∣u(ξ,t)>u(x,t)},A−u(x,t)=[0,1]∖A+u(x,t), and λ1λ1, λ2λ2 are non-negative functions.
We prove the existence of solutions for a particular class of initial data u(x,0)u(x,0). We also prove that the solutions are unique. Finally, under additional constraints on the initial data, we give an explicit expression for the solution.
Keywords
integro-differential equation , Relaxation equation , existence and uniqueness
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2009
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
860868
Link To Document