• Title of article

    General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space Original Research Article

  • Author/Authors

    Suhong Li، نويسنده , , Lihua Li، نويسنده , , Yongfu Su، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    7
  • From page
    3065
  • To page
    3071
  • Abstract
    Let HH be a Hilbert space and ff a fixed contractive mapping with coefficient 0<α<10<α<1, AA a strongly positive linear bounded operator with coefficient View the MathML sourceγ̄>0. Consider two iterative methods that generate the sequences {xn},{yn}{xn},{yn} by the algorithm, respectively. equation(I) View the MathML sourcexn=(I−αnA)1tn∫0tnT(s)xnds+αnγf(xn) Turn MathJax on equation(II) View the MathML sourceyn+1=(I−αnA)1tn∫0tnT(s)ynds+αnγf(yn) Turn MathJax on where {αn}{αn} and {tn}{tn} are two sequences satisfying certain conditions, and ℑ={T(s):s≥0}ℑ={T(s):s≥0} is a one-parameter nonexpansive semigroup on HH. It is proved that the sequences {xn},{yn}{xn},{yn} generated by the iterative method (I) and (II), respectively, converge strongly to a common fixed point x∗∈F(ℑ)x∗∈F(ℑ) which solves the variational inequality
  • Keywords
    Nonexpansive semigroup , Variational inequality , Iterative method , Viscosity approximation
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2009
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    861006