• Title of article

    Singular non-linear two-point boundary value problems: Existence and uniqueness Original Research Article

  • Author/Authors

    William F. Ford، نويسنده , , James A. Pennline، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    14
  • From page
    1059
  • To page
    1072
  • Abstract
    A general approach is presented for proving existence and uniqueness of solutions to the singular boundary value problem View the MathML sourcey″(x)+mxy′(x)=f(x,y(x)),x∈(0,1], Turn MathJax on View the MathML sourcey′(0)=0,Ay(1)+By′(1)=C,A>0,B,C⩾0. Turn MathJax on The proof is constructive in nature, and could be used for numerical generation of the solution. The only restriction placed on f(x,y)f(x,y) is that it not be a singular function of the independent variable xx; singularities in yy are easily avoided. Solutions are found in finite regions where ∂f/∂y⩾0∂f/∂y⩾0, using an integral equation whose Green’s function contains an adjustable parameter that secures convergence of the Picard iterative sequence. Methods based on the theory are developed and applied to a set of problems that have appeared previously in published works.
  • Keywords
    Integral equation , Picard sequence , Constructive existence , Uniqueness , Singular boundary value problem , Green’s function
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2009
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    861244