• Title of article

    A free boundary problem for the image-Laplacian Original Research Article

  • Author/Authors

    Juli?n Fern?ndez Bonder، نويسنده , , Sandra Mart?nez، نويسنده , , Noemi Wolanski، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    26
  • From page
    1078
  • To page
    1103
  • Abstract
    We consider the optimization problem of minimizing View the MathML source∫Ω1p(x)|∇u|p(x)+λ(x)χ{u>0}dx in the class of functions W1,p(⋅)(Ω)W1,p(⋅)(Ω) with View the MathML sourceu−φ0∈W01,p(⋅)(Ω), for a given φ0≥0φ0≥0 and bounded. W1,p(⋅)(Ω)W1,p(⋅)(Ω) is the class of weakly differentiable functions with View the MathML source∫Ω|∇u|p(x)dx<∞. We prove that every solution uu is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω∩∂{u>0}Ω∩∂{u>0}, is a regular surface.
  • Keywords
    Variable exponent spaces , free boundaries , Minimization
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2010
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    862161