• Title of article

    Fractal Poisson processes

  • Author/Authors

    Iddo Eliazar، نويسنده , , Joseph Klafter، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    12
  • From page
    4985
  • To page
    4996
  • Abstract
    The Central Limit Theorem (CLT) and Extreme Value Theory (EVT) study, respectively, the stochastic limit-laws of sums and maxima of sequences of independent and identically distributed (i.i.d.) random variables via an affine scaling scheme. In this research we study the stochastic limit-laws of populations of i.i.d. random variables via nonlinear scaling schemes. The stochastic population-limits obtained are fractal Poisson processes which are statistically self-similar with respect to the scaling scheme applied, and which are characterized by two elemental structures: (i) a universal power-law structure common to all limits, and independent of the scaling scheme applied; (ii) a specific structure contingent on the scaling scheme applied. The sum-projection and the maximum-projection of the population-limits obtained are generalizations of the classic CLT and EVT results — extending them from affine to general nonlinear scaling schemes
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Serial Year
    2008
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Record number

    872676