• Title of article

    Fusion rules for admissible representations of affine algebras: the case of A2(1) Original Research Article

  • Author/Authors

    P. Furlan، نويسنده , , A.Ch. Ganchev، نويسنده , , V.B. Petkova، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    24
  • From page
    645
  • To page
    668
  • Abstract
    We describe the fusion rules for a series of admissible representations of sl(3) at fractional level 3/p − 3. Based on the analysis of some basic set of singular-vector decoupling equations we propose a formula for the fusion rule multiplicities generalising the Verlinde formula. The results admit an interpretation in terms of the affine Weyl group introduced by Kac and Wakimoto. It replaces the ordinary affine Weyl group in the analogous formula for the fusion rule multiplicities of integrable representations. Elements of the representation theory of a hidden finite-dimensional graded algebra behind the admissible representations are briefly discussed.
  • Keywords
    * Admissible representations , * Fusion rules
  • Journal title
    Nuclear Physics B
  • Serial Year
    1998
  • Journal title
    Nuclear Physics B
  • Record number

    880694