Title of article
Separable partitions Original Research Article
Author/Authors
Noga Alon، نويسنده , , Shmuel Onn، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
13
From page
39
To page
51
Abstract
An ordered partition of a set of n points in the d-dimensional Euclidean space is called a separable partition if the convex hulls of the parts are pairwise disjoint. For each fixed p and d we determine the maximum possible number rp.d(n) of separable partitions into p parts of n points in real d-space up to a constant factor. Of particular interest are the values rp, d(n) = ⊖(nd(p2)) for every fixed p and d ⩾ 3, and rp, 2(n) = ⊖(n6p −12) for every fixed p ⩾ 3. We establish similar results for spaces of finite Vapnik-Chervonenkis dimension and study the corresponding problem for points on the moment curve as well.
Keywords
Partition , Moment curve , Davenport Schinzel sequence , Vapnik-Chervonenkis dimension , Convexity space , Convex polytope
Journal title
Discrete Applied Mathematics
Serial Year
1999
Journal title
Discrete Applied Mathematics
Record number
884858
Link To Document