Title of article
A Generalization of maximal independent sets Original Research Article
Author/Authors
Arun Jagota، نويسنده , , Giri Narasimhan، نويسنده , , ?ubom??r ?oltés، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
13
From page
223
To page
235
Abstract
We generalize the concept of maximal-independent set in the following way. For a nonnegative integer k we define a k-insulated set of a graph G as a subset S of its vertices such that each vertex in S is adjacent to at most k other vertices in S and each vertex not in S is adjacent to at least k+1 vertices in S. We show that it is NP-hard to approximate a maximum k-insulated set within a polynomial factor and describe a polynomial algorithm which approximates a maximum k-insulated set in an n-vertex graph to within the factor of cnk/log2n, for a constant c>0. We also give an O(kn2) algorithm which finds an arbitrary k-insulated set.
Keywords
Energy function , Hopfield network , Greedy algorithms
Journal title
Discrete Applied Mathematics
Serial Year
2001
Journal title
Discrete Applied Mathematics
Record number
885185
Link To Document