Title of article
A note on Nordhaus–Gaddum inequalities for domination Original Research Article
Author/Authors
Shan Erfang، نويسنده , , Dang Chuangyin، نويسنده , , Kang Liying، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
3
From page
83
To page
85
Abstract
For a graph G of order n, let γ(G), γ2(G) and γt(G) be the domination, double domination and total domination numbers of G, respectively. The minimum degree of the vertices of G is denoted by δ(G) and the maximum degree by Δ(G). In this note we prove a conjecture due to Harary and Haynes saying that if a graph G has γ(G),γ(Ḡ)⩾4, thenγ2(G)+γ2(Ḡ)⩽n−Δ(G)+δ(G)−1⩽n−1andγt(G)+γt(Ḡ)⩽n−Δ(G)+δ(G)−1⩽n−1,where Ḡ is the complement of G.
Keywords
Domination , Total domination , Double domination
Journal title
Discrete Applied Mathematics
Serial Year
2004
Journal title
Discrete Applied Mathematics
Record number
885787
Link To Document