• Title of article

    Learning random monotone DNF Original Research Article

  • Author/Authors

    Jeffrey C. Jackson، نويسنده , , Homin K. Lee، نويسنده , , Rocco A. Servedio، نويسنده , , Andrew Wan، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    13
  • From page
    259
  • To page
    271
  • Abstract
    We give an algorithm that with high probability properly learns random monotone DNF with image terms of length image under the uniform distribution on the Boolean cube image. For any function image the algorithm runs in time image and with high probability outputs an image-accurate monotone DNF hypothesis. This is the first algorithm that can learn monotone DNF of arbitrary polynomial size in a reasonable average-case model of learning from random examples only. Our approach relies on the discovery and application of new Fourier properties of monotone functions which may be of independent interest.
  • Keywords
    Fourier analysis , Computational learning theory , Monotone Boolean function
  • Journal title
    Discrete Applied Mathematics
  • Serial Year
    2011
  • Journal title
    Discrete Applied Mathematics
  • Record number

    887568