• Title of article

    Bifurcation mechanism underlying echelon-mode formation Original Research Article

  • Author/Authors

    Kazuo Murota، نويسنده , , Kiyohiro Ikeda، نويسنده , , Kenjiro Terada، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    26
  • From page
    423
  • To page
    448
  • Abstract
    This paper presents a theory on the underlying mathematical mechanism of the echelon mode (a series of parallel short wrinkles that looks like a flight of stairs or wild geese arranged in formation) which has been observed ubiquitously with uniform materials, but which has long denied successful numerical simulations. It is shown by means of the group-theoretic bifurcation theory that the echelon mode formation can be explained as a recursive (secondary, tertiary, …) symmetry-breaking bifurcation if O(2) × O(2) is chosen as the underlying symmetry to model the local uniformity of materials. This implies, for example, that the use of periodic boundaries is essential to successfully realize the oblique stripe patterns and the subsequent echelon mode formation in numerical simulations. In fact, a recursive bifurcation analysis of a rectangular domain with periodic boundaries subject to uniform uniaxial compression yields various kinds of patterns, such as diamond, stripe and echelon modes, which are often observed for materials under shear.
  • Journal title
    Computer Methods in Applied Mechanics and Engineering
  • Serial Year
    1999
  • Journal title
    Computer Methods in Applied Mechanics and Engineering
  • Record number

    891513