• Title of article

    Convergence property of a class of variable metric methods Original Research Article

  • Author/Authors

    Zhongzhi Zhang، نويسنده , , Ding-Hua Cao، نويسنده , , Jinping Zeng، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    6
  • From page
    437
  • To page
    442
  • Abstract
    We investigate convergence property of the restricted Broyden class of variable metric methods. We show that when these methods with unit step are applied to a strictly convex quadratic objective function, the generated iterative sequence converges to the unique solution of the problem globally and superlinearly. Moreover, the distance between the iterative matrix and the Hessian matrix of the objective function decreases with iterations. The sequence of function values also exhibits descent property when the iteration is sufficiently large.
  • Keywords
    Variable metric methods , Quadratic function
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2004
  • Journal title
    Applied Mathematics Letters
  • Record number

    897724