• Title of article

    Chaos control by harmonic excitation with proper random phase

  • Author/Authors

    Youming Lei، نويسنده , , Tong Fang، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2004
  • Pages
    7
  • From page
    1175
  • To page
    1181
  • Abstract
    Chaos control may have a dual function: to suppress chaos or to generate it. We are interested in a kind of chaos control by exerting a weak harmonic excitation with random phase. The dual function of chaos control in a nonlinear dynamic system, whether a suppressing one or a generating one, can be realized by properly adjusting the level of random phase and determined by the sign of the top Lyapunov exponent of the system response. Two illustrative examples, a Duffing oscillator subject to a harmonic parametric control and a driven Murali-Lakshmanan-Chua (MLC) circuit imposed with a weak harmonic control, are presented here to show that the random phase plays a decisive role for control function. The method for computing the top Lyapunov exponent is based on Khasminskiiʹs formulation for linearized systems. Then, the obtained results are further verified by the Poincare map analysis on dynamical behavior of the system, such as stability, bifurcation and chaos. Both two methods lead to fully consistent results.
  • Journal title
    Chaos, Solitons and Fractals
  • Serial Year
    2004
  • Journal title
    Chaos, Solitons and Fractals
  • Record number

    900918