Title of article
Peano kernel behaviour and error bounds for symmetric quadrature formulas
Author/Authors
P. Favati، نويسنده , , G. Lotti، نويسنده , , F. Romani، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 1995
Pages
8
From page
27
To page
34
Abstract
For symmetric quadrature formulas, sharper error bounds are generated by a formulation of the Peano Kernel theory which fully exploits the symmetry properties. Formulas which use nodes outside the integration interval and/or derivative data are taken into consideration. We prove also that, for any symmetric formula, the Peano Kernels of a sufficiently large degree do not change sign in a suitable interval. This result allows a finite expansion of the truncation error for any regular integrand function.
Keywords
Numerical integration , Quadrature formulas , Peano Kernel , Truncation error in quadrature , Hermite quadrature
Journal title
Computers and Mathematics with Applications
Serial Year
1995
Journal title
Computers and Mathematics with Applications
Record number
917526
Link To Document