• Title of article

    Peano kernel behaviour and error bounds for symmetric quadrature formulas

  • Author/Authors

    P. Favati، نويسنده , , G. Lotti، نويسنده , , F. Romani، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 1995
  • Pages
    8
  • From page
    27
  • To page
    34
  • Abstract
    For symmetric quadrature formulas, sharper error bounds are generated by a formulation of the Peano Kernel theory which fully exploits the symmetry properties. Formulas which use nodes outside the integration interval and/or derivative data are taken into consideration. We prove also that, for any symmetric formula, the Peano Kernels of a sufficiently large degree do not change sign in a suitable interval. This result allows a finite expansion of the truncation error for any regular integrand function.
  • Keywords
    Numerical integration , Quadrature formulas , Peano Kernel , Truncation error in quadrature , Hermite quadrature
  • Journal title
    Computers and Mathematics with Applications
  • Serial Year
    1995
  • Journal title
    Computers and Mathematics with Applications
  • Record number

    917526