• Title of article

    Riordan arrays and harmonic number identities

  • Author/Authors

    Weiping Wang، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    16
  • From page
    1494
  • To page
    1509
  • Abstract
    Let the numbers P.r; n; k/ be defined by P.r; n; k/ VD Pr H.1/ n 􀀀 H.1/ k ; : : : ; H.r/ n 􀀀 H.r/ k ; where Pr .x1; : : : ; xr / D .􀀀1/rYr .􀀀0Wx1;􀀀1Wx2; : : : ;􀀀.r 􀀀 1/Wxr / and Yr are the exponential complete Bell polynomials. By observing that the numbers P.r; n; k/ generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are obtained. In particular, some of these harmonic number identities also involve other special combinatorial sequences, such as the Stirling numbers of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy numbers of both kinds.
  • Keywords
    Riordan arrays , Stirling numbers , Harmonic numbers , Cauchy numbers , Lah numbers , Bernoulli numbers and polynomials
  • Journal title
    Computers and Mathematics with Applications
  • Serial Year
    2010
  • Journal title
    Computers and Mathematics with Applications
  • Record number

    921657