Title of article
Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value
Author/Authors
Carlos A. Bana e Costa، نويسنده , , ?، نويسنده , , A. Brânda? b، نويسنده , , L. Coroianu a، نويسنده , , e، نويسنده , , C. Negru?iu c، نويسنده , , O. Nica d، نويسنده , , e، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2011
Pages
23
From page
1379
To page
1401
Abstract
Value and ambiguity are two parameters which were introduced to represent fuzzy
numbers. In this paper, we find the nearest trapezoidal approximation and the nearest
symmetric trapezoidal approximation to a given fuzzy number, with respect to the average
Euclidean distance, preserving the value and ambiguity. To avoid the laborious calculus
associated with the Karush–Kuhn–Tucker theorem, the working tool in some recent papers,
a less sophisticated method is proposed. Algorithms for computing the approximations,
many examples, proofs of continuity and two applications to ranking of fuzzy numbers
and estimations of the defect of additivity for approximations are given.
Keywords
Trapezoidal fuzzy number , Fuzzy number , approximation , Ambiguity , Value
Journal title
Computers and Mathematics with Applications
Serial Year
2011
Journal title
Computers and Mathematics with Applications
Record number
921923
Link To Document