• Title of article

    DEMORS:Ahybridmulti-objectiveoptimizationalgorithmusingdifferentialevolution and roughsettheoryforconstrainedproblems

  • Author/Authors

    Luis V.Santana-Quintero، نويسنده , , AlfredoG.Hern?ndez-D?azb، نويسنده , , Juli?nMolinac، نويسنده , , CarlosA.CoelloCoello، نويسنده , , Rafael Caballeroc، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 2010
  • Pages
    11
  • From page
    470
  • To page
    480
  • Abstract
    The aimofthispaperistoshowhowthehybridizationofamulti-objectiveevolutionaryalgorithm (MOEA) andalocalsearchmethodbasedontheuseofroughsettheoryisaviablealternativetoobtaina robust algorithmabletosolvedifficultconstrainedmulti-objectiveoptimizationproblemsatamoderate computational cost.ThispaperextendsapreviouslypublishedMOEA[Hernández-DíazAG,Santana- Quintero LV,CoelloCoelloC,CaballeroR,MolinaJ.Anewproposalformulti-objectiveoptimizationusing differential evolutionandroughsettheory.In:2006geneticandevolutionarycomputationconference (GECCOʹ2006). Seattle,Washington,USA:ACMPress;July2006],whichwaslimitedtounconstrained multi-objective optimizationproblems.Here,themainideaistousethissortofhybridapproachto approximate theParetofrontofaconstrainedmulti-objectiveoptimizationproblemwhileperforminga relatively lownumberoffitnessfunctionevaluations.Sinceinreal-worldproblemsthecostofevaluating the objectivefunctionsisthemostsignificant,ourunderlyingassumptionisthat,byaimingtominimize the numberofsuchevaluations,ourMOEAcanbeconsideredefficient.Asinitspreviousversion,our hybrid approachoperatesintwostages:inthefirstone,amulti-objectiveversionofdifferentialevolution is usedtogenerateaninitialapproximationoftheParetofront.Then,inthesecondstage,roughset theory isusedtoimprovethespreadandqualityofthisinitialapproximation.Toassesstheperformance of ourproposedapproach,weadopt,ontheonehand,asetofstandardbi-objectiveconstrainedtest problems and,ontheotherhand,alargereal-worldproblemwitheightobjectivefunctionsand160 decision variables.Thefirstsetofproblemsaresolvedperforming10,000fitnessfunctionevaluations, which isacompetitivevaluecomparedtothenumberofevaluationspreviouslyreportedinthespecial- ized literatureforsuchproblems.Thereal-worldproblemissolvedperforming250,000fitnessfunction evaluations, mainlybecauseofitshighdimensionality.Ourresultsarecomparedwithrespecttothose generated byNSGA-II,whichisaMOEArepresentativeofthestate-of-the-artinthearea.
  • Keywords
    Multi-objective optimization , Hybrid algorithms , Differential evolution , Rough set theory
  • Journal title
    Computers and Operations Research
  • Serial Year
    2010
  • Journal title
    Computers and Operations Research
  • Record number

    927662