• Title of article

    Blow-Up of Solutions with Sign Changes for a Semilinear Diffusion Equation

  • Author/Authors

    Noriko Mizoguchi، نويسنده , , Eiji Yanagida، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 1996
  • Pages
    8
  • From page
    283
  • To page
    290
  • Abstract
    This paper is concerned with the initial-boundary value problem utsuxxqlf u. in 0, 1.= 0, `., u x, 0.su0 x. in 0, 1., with the Dirichlet, Neumann, or periodic boundary condition. Here l )0 is a parameter, and f is an odd function of u satisfying f 9 0.)0 and some convexity condition. Let z U. be the number of times of sign changes for UgCw0, 1x. It is shown that there exists an increasing sequence of positive numbers lk4ks0, 1, 2, . . . such that any solution with z u0.sk blows up in finite time if l Glk , and there exists a global solution with z u0.sk if l -lk.
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    1996
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    929312