Title of article
Singular solutions of a nonlinear equation in bounded domains of R2
Author/Authors
Habib Mâagli and Lamia Mâatoug، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2002
Pages
17
From page
230
To page
246
Abstract
We consider the nonlinear problem
(P)
u(x) + f (x,u(x)) = 0, x ∈ D \ {0},
u(x) > 0, x ∈ D \ {0},
u(x) ∼ Log 1/|x| near x = 0,
u(x) = 0, x ∈ ∂D,
where D is a bounded regular Jordan domain in R2 containing 0 and f is a measurable
function on D × (0,∞). When the function x → f (x,G(x, 0))/G(x, 0) is in a certain
class K, we show the existence of infinitely many solutions of (P).
G(x, y) is the Green’s function of the Laplacian in D. 2002 Elsevier Science (USA).
All rights reserved.
Résumé
On considére le problème non-lineaire suivant :
(P)
u(x) + f (x,u(x)) = 0, x ∈ D \ {0},
u(x) > 0, x ∈ D \ {0},
u(x) ∼ Log 1/|x| au voisinage de x = 0,
u(x) = 0, x ∈ ∂D,
où D est un domaine de Jordan borné et régulier contenant 0 et f est une fonction
mesurable sur D × (0,∞). On montre que si la fonction x →f (x,G(x, 0))/G(x, 0) est
dans une certaine classe K, alors le problème (P) admet une infinité de solutions
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2002
Journal title
Journal of Mathematical Analysis and Applications
Record number
929966
Link To Document