Title of article
On the existence and nonexistence of positive solutions for nonlinear Sturm–Liouville boundary value problems ✩
Author/Authors
Yongxiang Li، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2005
Pages
13
From page
74
To page
86
Abstract
In this paper the existence and nonexistence results of positive solutions are obtained for Sturm–
Liouville boundary value problem
− p(x)u + q(x)u = f (x,u), x ∈ (0, 1),
au(0) −bp(0)u (0) = 0, cu(1) +dp(1)u (1) = 0,
where p ∈ C1[0, 1], q ∈ C[0, 1], p(x) > 0, q(x) 0 for x ∈ [0, 1], f ∈ C([0, 1]×R+), a, b, c, d 0
are constants and satisfy (a +b)(c +d)>0. The discussion is based on the positivity estimation for
the Green’s function of associated linear boundary value problem and the fixed point index theory in
cones.
2004 Elsevier Inc. All rights reserved.
Keywords
Positive solution , Sturm–Liouville boundary value problem , Cone , Fixed point index
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2005
Journal title
Journal of Mathematical Analysis and Applications
Record number
933745
Link To Document