• Title of article

    A refined cosπρ theorem

  • Author/Authors

    P.C. Fenton، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2005
  • Pages
    8
  • From page
    675
  • To page
    682
  • Abstract
    For an entire function f (z), let M(r) and m(r) be the maximum and minimum modulus, and let n(r) be the number of nonzero zeros of f (z) in |z| < r. Suppose that α and ρ are positive numbers, with 0 < ρ < 1, and that φ(r) is an increasing, unbounded function satisfying φ(r) = o(rρ) as r→∞. It is shown that if f (z) has order ρ, and n(r) − αrρ →−∞as r→∞, and |n(r) − αrρ| φ(r) for all large r, then lim r→∞ log m(r) −cosπρ logM(r) φ(r) log r −(1−cosπρ). An example shows that the constant on the right-hand side cannot be replaced by a number larger than −(1− cosπρ)/2.  2005 Elsevier Inc. All rights reserved
  • Keywords
    Entire function , Minimum modulus , Maximum modulus
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2005
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    934167