Title of article
Saturation of convergence for q-Bernstein polynomials in the case q 1
Author/Authors
Heping Wang، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2008
Pages
7
From page
744
To page
750
Abstract
In the note, we discuss Voronovskaya type theorem and saturation of convergence for q-Bernstein polynomials for a function
analytic in the disc UR := {z: |z| q) for arbitrary fixed q 1. We give explicit formulas of Voronovskaya type for the
q-Bernstein polynomials for q >1. We show that the rate of convergence for the q-Bernstein polynomials is o(q−n) (q >1) for
infinite number of points having an accumulation point on UR/q if and only if f is linear.
© 2007 Elsevier Inc. All rights reserved.
Keywords
Saturation , Voronovskaya type formulas , q-Bernstein polynomials
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2008
Journal title
Journal of Mathematical Analysis and Applications
Record number
936413
Link To Document