• Title of article

    An improvement of Montel’s criterion

  • Author/Authors

    Yan Xu، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2008
  • Pages
    5
  • From page
    1075
  • To page
    1079
  • Abstract
    Let F be a family of holomorphic functions in a domain D, and let a(z), b(z) be two holomorphic functions in D such that a(z) ≡ b(z), and a(z) ≡ a (z) or b(z) ≡ b (z). In this paper, we prove that: if, for each f ∈ F, f (z) − a(z) and f (z) − b(z) have no common zeros, f (z) = a(z) whenever f (z) = a(z), and f (z) = b(z) whenever f (z) = b(z) in D, then F is normal in D. This result improves and generalizes the classical Montel’s normality criterion, and the related results of Pang, Fang and the first author. Some examples are given to show the sharpness of our result. © 2008 Elsevier Inc. All rights reserved
  • Keywords
    holomorphic function , normal family , Montel’s criterion
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2008
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    937167