• Title of article

    The Full Periodicity Kernel for σ Maps

  • Author/Authors

    J. llibre، نويسنده , , J. Paranos، نويسنده , , J.A. Rodriguez، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 1994
  • Pages
    13
  • From page
    639
  • To page
    651
  • Abstract
    Let σ be the topological space formed by the points (x, y) of R2 such that either x2 + y2 = 1, or 0 ≤ x ≤ 2 and y = 1. A σ map ƒ is a continuous self-map of σ having the branching point (0, 1) as a fixed point. We denote by Per(ƒ) the set of periods of all periodic points of ƒ, and by N the set of positive integers. We prove that if ƒ is a σ map and {2, 3, 4, 5, 7} ⊆ Per(ƒ), then Per(ƒ) = N. Conversely, if S ⊆ N is a set such that for every σ map ƒ S ⊆ Per(ƒ) implies Per(ƒ) = N, then {2, 3, 4, 5, 7} ⊆ S.
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    1994
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    938136