Title of article
Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations Original Research Article
Author/Authors
K. Debrabant، نويسنده , , K. Strehmel، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
17
From page
213
To page
229
Abstract
We apply Runge–Kutta methods to linear partial differential-algebraic equations of the form Aut(t,x)+B(uxx(t,x)+rux(t,x))+Cu(t,x)=f(t,x)Aut(t,x)+B(uxx(t,x)+rux(t,x))+Cu(t,x)=f(t,x), where A,B,C∈Rn,nA,B,C∈Rn,n and the matrix A is singular. We prove that under certain conditions the temporal convergence order of the fully discrete scheme depends on the time index of the partial differential-algebraic equation. In particular, fractional orders of convergence in time are encountered. Furthermore we show that the fully discrete scheme suffers an order reduction caused by the boundary conditions. Numerical examples confirm the theoretical results.
Journal title
Applied Numerical Mathematics
Serial Year
2005
Journal title
Applied Numerical Mathematics
Record number
942392
Link To Document