• Title of article

    Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations Original Research Article

  • Author/Authors

    K. Debrabant، نويسنده , , K. Strehmel، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    17
  • From page
    213
  • To page
    229
  • Abstract
    We apply Runge–Kutta methods to linear partial differential-algebraic equations of the form Aut(t,x)+B(uxx(t,x)+rux(t,x))+Cu(t,x)=f(t,x)Aut(t,x)+B(uxx(t,x)+rux(t,x))+Cu(t,x)=f(t,x), where A,B,C∈Rn,nA,B,C∈Rn,n and the matrix A is singular. We prove that under certain conditions the temporal convergence order of the fully discrete scheme depends on the time index of the partial differential-algebraic equation. In particular, fractional orders of convergence in time are encountered. Furthermore we show that the fully discrete scheme suffers an order reduction caused by the boundary conditions. Numerical examples confirm the theoretical results.
  • Journal title
    Applied Numerical Mathematics
  • Serial Year
    2005
  • Journal title
    Applied Numerical Mathematics
  • Record number

    942392