• Title of article

    New error estimates of biquadratic Lagrange elements for Poissonʹs equation Original Research Article

  • Author/Authors

    Hung-Tsai Huang، نويسنده , , Zi-Cai Li، نويسنده , , Aihui Zhou، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    33
  • From page
    712
  • To page
    744
  • Abstract
    In this paper, we report some new ultraconvergence results of biquadratic Lagrange elements for the Dirichlet problem of Poissonʹs equation, −Δu=f−Δu=f. The point-line-area interpolant in [V. Girault, P.A. Raviart, A Finite Element Methods for Navier–Stokes Equation, Theory and Algorithms, Springer, 1986] is chosen in this paper, instead of the traditional pure point interpolant in [P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Finite Element Methods, Part 1, North-Holland, Amsterdam, 1991, pp. 17–351]. Suppose that the solution is smooth enough, by means of an a posteriori interpolant, the ultraconvergence O(h4)O(h4) in H1H1 norm is proved for uniform rectangles □ij□ij, and the higher ultraconvergence O(h6−ℓ)O(h6−ℓ) in Hℓ(ℓ=0,1)Hℓ(ℓ=0,1) norm under the special case of uniform squares □ij□ij and fxxyy=0fxxyy=0. Even when fxxyy≠0fxxyy≠0, we propose two techniques: (1) the Richardson extrapolation method and (2) the correction method, to retain the same higher ultraconvergence results. Moreover, the ultraconvergence O(h6−ℓ|lnh|)O(h6−ℓ|lnh|) is also proved for View the MathML sourceℓ(ℓ=0,1) order infinite norms. In this paper, the numerical experiments are provided to validate all the ultraconvergence results made. Note that the new ultraconvergence results under the special case are three order higher than the optimal convergence rate in [P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Finite Element Methods, Part 1, North-Holland, Amsterdam, 1991, pp. 17–351], and one order than that in [Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements, in: Proc. Sys. Sci. and Sys. Engrg., Great Wall Culture Publishers, Hong Kong, 1991, pp. 217–229].
  • Journal title
    Applied Numerical Mathematics
  • Serial Year
    2006
  • Journal title
    Applied Numerical Mathematics
  • Record number

    942665