• Title of article

    The volume of relaxed Boolean-quadric and cut polytopes

  • Author/Authors

    Chun-Wa Ko، نويسنده , , Jon Lee ، نويسنده , , Einar Steingr?msson، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    6
  • From page
    293
  • To page
    298
  • Abstract
    For n ⩾ 2, the boolean quadric polytope Pn is the convex hull in d:=(n+12) dimensions of the binary solutions xixj = yij, for all i < j in N ≔ 1,2,. …,n. The polytope is naturally modeled by a somewhat larger polytope; namely, Ln the solution set of uij ⩽ xij, yij ⩽ xj, xi + xj ⩽ 1 + yij, yij ⩾ 0, for all i, j in N. In a first step toward seeing how well Ln approximates Pn we establish that the d-dimensional volume of Ln is 22n−dn!/(2n)!. Using a well-known connection between Pn and the ‘cut polytope’ of a complete graph n + 1 vertices, we also establish the volume of a relaxation of this cut polytope.
  • Journal title
    Discrete Mathematics
  • Serial Year
    1997
  • Journal title
    Discrete Mathematics
  • Record number

    944111