Title of article
Random strongly regular graphs? Original Research Article
Author/Authors
Peter J. Cameron، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
12
From page
103
To page
114
Abstract
Strongly regular graphs lie on the cusp between highly structured and unstructured. For example, there is a unique strongly regular graph with parameters (36,10,4,2), but there are 32548 non-isomorphic graphs with parameters (36,15,6,6). (The first assertion is a special case of a theorem of Shrikhande, while the second is the result of a computer search by McKay and Spence.) In the light of this, it will be difficult to develop a theory of random strongly regular graphs! For certain values of the parameters, we have at least one prerequisite for a theory of random objects: there should be very many of them (e.g. superexponentially many). Two other features we would like are a method to sample from the uniform distribution (this is known in a couple of special cases) and information about how various graph parameters behave as random variables on the uniform distribution. Very little is known but there are a few recent results and some interesting problems. This paper develops no general theory, but explores a few examples and techniques which can be applied in some cases. Thomason has developed a theory of “pseudo-random graphs” which he calls (p,α)-jumbled graphs. Some of these graphs are strongly regular, but they are very special strongly regular graphs. I conclude with some speculation about “random jumbled graphs”.
Keywords
Random graphs , Strongly regular graphs
Journal title
Discrete Mathematics
Serial Year
2003
Journal title
Discrete Mathematics
Record number
948689
Link To Document