• Title of article

    On the Randić index Original Research Article

  • Author/Authors

    Charles Delorme، نويسنده , , Odile Favaron، نويسنده , , Dieter Rautenbach، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    10
  • From page
    29
  • To page
    38
  • Abstract
    The Randić index R(G) of a graph G=(V,E) is the sum of (d(u)d(v))−1/2 over all edges uv∈E of G. Bollobás and Erdős (Ars Combin. 50 (1998) 225) proved that the Randić index of a graph of order n without isolated vertices is at least n−1. They asked for the minimum value of R(G) for graphs G with given minimum degree δ(G). We answer their question for δ(G)=2 and propose a related conjecture. Furthermore, we prove a best-possible lower bound on the Randić index of a triangle-free graph G with given minimum degree δ(G).
  • Keywords
    Finite graph , Randic index , Wiener index , Average distance
  • Journal title
    Discrete Mathematics
  • Serial Year
    2002
  • Journal title
    Discrete Mathematics
  • Record number

    949322