• Title of article

    Proof of the Alon–Yuster conjecture Original Research Article

  • Author/Authors

    J?nos Koml?s، نويسنده , , Gabor Sarkozy، نويسنده , , Endre Szemerédi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    15
  • From page
    255
  • To page
    269
  • Abstract
    In this paper we prove the following conjecture of Alon and Yuster. Let H be a graph with h vertices and chromatic number k. There exist constants c(H) and n0(H) such that if n⩾n0(H) and G is a graph with hn vertices and minimum degree at least (1−1/k)hn+c(H), then G contains an H-factor. In fact, we show that if H has a k-coloring with color-class sizes h1⩽h2⩽⋯⩽hk, then the conjecture is true with c(H)=hk+hk−1−1.
  • Journal title
    Discrete Mathematics
  • Serial Year
    2001
  • Journal title
    Discrete Mathematics
  • Record number

    949706