• Title of article

    On the simultaneous edge-coloring conjecture

  • Author/Authors

    M.T. Hajiaghaee، نويسنده , , E.S. Mahmoodian، نويسنده , , V.S. Mirrokni، نويسنده , , A. Saberi، نويسنده , , R. Tusserkani، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    6
  • From page
    267
  • To page
    272
  • Abstract
    At the 16th British Combinatorial Conference (1997), Cameron introduced a new concept called 2-simultaneous edge-coloring and conjectured that every bipartite graphic sequence, with all degrees at least 2, has a 2-simultaneous edge-colorable realization. In fact, this conjecture is a reformulation of a conjecture of Keedwell (Graph Theory, Combinatorics, Algorithms and Applications, Proceedings of Third China–USA International Conference, Beijing, June 1–5, 1993, World Scientific Publ. Co., Singapore, 1994, pp. 111–124) on the existence of critical partial latin squares (CPLS) of a given type. In this paper, using some classical results about nowhere-zero 4-flows and oriented cycle double covers, we prove that this conjecture is true for all bipartite graphic sequences with all degrees at least 4.
  • Journal title
    Discrete Mathematics
  • Serial Year
    2000
  • Journal title
    Discrete Mathematics
  • Record number

    950405