• Title of article

    Feasible edge colorings of trees with cardinality constraints Original Research Article

  • Author/Authors

    D. de Werra، نويسنده , , A. Hertz، نويسنده , , D. Kobler، نويسنده , , N.V.R. Mahadev، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    12
  • From page
    61
  • To page
    72
  • Abstract
    A variation of preemptive open shop scheduling corresponds to finding a feasible edge coloring in a bipartite multigraph with some requirements on the size of the different color classes. We show that for trees with fixed maximum degree, one can find in polynomial time an edge k-coloring where for i=1,…,k the number of edges of color i is exactly a given number hi, and each edge e gets its color from a set ϕ(e) of feasible colors, if such a coloring exists. This problem is NP-complete for general bipartite multigraphs. Applications to open shop problems with costs for using colors are described.
  • Keywords
    Open shop , Edge coloring , Timetabling , Feasible colors , Cost , Cardinality constraints
  • Journal title
    Discrete Mathematics
  • Serial Year
    2000
  • Journal title
    Discrete Mathematics
  • Record number

    950522