• Title of article

    Temperature dependence of avalanche multiplication in InP-based HBTs with InGaAs/InP composite collector: device characterization and physics model

  • Author/Authors

    Yang، Hong نويسنده , , Wang، Hong نويسنده , , Neo، Wah-Peng نويسنده , , K.، Radhakrishnan, نويسنده , , Tan، Chee Leong نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -2334
  • From page
    2335
  • To page
    0
  • Abstract
    Recent efforts are being focused on improving the breakdown of InP-based heterojunction bipolar transistors (HBTs) towards high-power applications. A fundamental understanding of the temperature dependence of breakdown and its physics mechanism in these devices is important. In this work, a detailed characterization of temperature-dependent collector breakdown behavior in InP DHBTs (DHBTs) with an InGaAs/InP composite collector is carried out. A physics model for the prediction of temperature-dependent breakdown in lnP/InGaAs composite collector is developed. We found that, although the variation of impact ionization coefficient due to the change of temperature may affect the device breakdown, the temperaturedependence of breakdown in the lnGaAs/InP composite collector could be significantly affected by the carrier transport in the InGaAs region. As temperature is increased, the increase in the contribution of InGaAs layer to the junction breakdown due to the reduction of electron energy relaxation length could be the root cause of the reduction of junction breakdown voltage. Good agreement between the physics model and experimental data demonstrate the validities of the proposed physics model to predict the temperature dependent breakdown characteristics for InP DHBTs.
  • Keywords
    Genotype , Energy , OBESITY
  • Journal title
    IEEE TRANSACTIONS ON ELECTRON DEVICES
  • Serial Year
    2003
  • Journal title
    IEEE TRANSACTIONS ON ELECTRON DEVICES
  • Record number

    95804