• Title of article

    INVARIANT RINGS OF ORTHOGONAL GROUPS OVER F2

  • Author/Authors

    H. KROPHOLLER، P. نويسنده , , MOHSENI RAJAEI، S. نويسنده , , J. SEGAL، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    -6
  • From page
    7
  • To page
    0
  • Abstract
    We determine the rings of invariants S^G where S is the symmetric algebra on the dual of a vector space V over F2 and G is the orthogonal group preserving a non-singular quadratic form on V. The invariant ring is shown to have a presentation in which the difference between the number of generators and the number of relations is equal to the minimum possibility, namely dim V, and it is shown to be a complete intersection. In particular, the rings of invariants computed here are all Gorenstein and hence Cohen-Macaulay.
  • Keywords
    subspace , Hilbert transform , admissible majorant , model , Hardy space , inner function , shift operator
  • Journal title
    GLASGOW MATHEMATICAL JOURNAL
  • Serial Year
    2005
  • Journal title
    GLASGOW MATHEMATICAL JOURNAL
  • Record number

    99272