Title of article
INVARIANT RINGS OF ORTHOGONAL GROUPS OVER F2
Author/Authors
H. KROPHOLLER، P. نويسنده , , MOHSENI RAJAEI، S. نويسنده , , J. SEGAL، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
-6
From page
7
To page
0
Abstract
We determine the rings of invariants S^G where S is the symmetric algebra on the dual of a vector space V over F2 and G is the orthogonal group preserving a non-singular quadratic form on V. The invariant ring is shown to have a presentation in which the difference between the number of generators and the number of relations is equal to the minimum possibility, namely dim V, and it is shown to be a complete intersection. In particular, the rings of invariants computed here are all Gorenstein and hence Cohen-Macaulay.
Keywords
subspace , Hilbert transform , admissible majorant , model , Hardy space , inner function , shift operator
Journal title
GLASGOW MATHEMATICAL JOURNAL
Serial Year
2005
Journal title
GLASGOW MATHEMATICAL JOURNAL
Record number
99272
Link To Document