• DocumentCode
    1002786
  • Title

    Offline and online identification of hidden semi-Markov models

  • Author

    Azimi, Mehran ; Nasiopoulos, Panos ; Ward, Rabab Kreidieh

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada
  • Volume
    53
  • Issue
    8
  • fYear
    2005
  • Firstpage
    2658
  • Lastpage
    2663
  • Abstract
    We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
  • Keywords
    hidden Markov models; probability; recursive estimation; signal processing; adaptive algorithm; expectation maximization algorithm; hidden; offline identification; online identification; parameter identification algorithm; recursive error prediction; recursive maximum likelihood; semiMarkov model; state-duration-dependant transition probability; Adaptive algorithm; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Power engineering and energy; Predictive models; Signal processing; Speech processing; State estimation; Tensile stress; Expectation maximization (EM) algorithm; recursive maximum likelihood (RML); recursive prediction error (RPE); semi-Markov models;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2005.850344
  • Filename
    1468462